
BTRFS snapshots with
snapper
Picked from an article here.

Set up automatic snapshots of a BTRFS root subvolume, add these snapshots to the GRUB boot
menu, and gain the ability to rollback an Arch Linux system to an earlier state.

Let's go!
See "A(rch) to Z(ram)" for my step-by-step install of Arch, where I created:

@ subvolume, mounted to / . Create snapshots of this root subvolume.
@snapshots and other subvolumes, which are excluded from root snapshots.

1. Install Snapper and snap-pac
Snapper is a tool for managing BTRFS snapshots. It can create and restore snapshots, and
provides scheduled auto-snapping. Snap-pac provides a Pacman hook that uses Snapper to create
pre- and post- BTRFS snapshots triggered by use of the package manager.

Install ...

2. Create snapshot configuration
for root subvolume
Snapper's create-config command assumes:

$ sudo pacman -S snapper snap-pac

https://www.dwarmstrong.org/btrfs-snapshots-rollbacks/
https://www.dwarmstrong.org/tags/arch/
https://www.dwarmstrong.org/archlinux-install

Subvolume @ already exists and is mounted at / .
/.snapshots directory is not mounted and doesn't exist.

During my Arch install, I created the @ and @snapshots subvolumes, and /.snapshots mountpoint.
Before letting Snapper do its config thing, I need to move my earlier snapshot setup out of the way.

Unmount the subvolume and remove the mountpoint ...

Create a new root config ...

This generates:

Configuration file at /etc/snapper/configs/root .
Add root to SNAPPER_CONFIGS in /etc/conf.d/snapper .
Subvolume .snapshots where future snapshots for this configuration will be stored.

3. Setup /.snapshots
List subvolumes ...

Note the @snapshots subvolume I had created earlier, and the .snapshots created by Snapper.

I prefer my @snapshots setup over .snapshots , so I delete the Snapper-generated subvolume ...

Re-create and re-mount /.snapshots mountpoint ...

$ sudo umount /.snapshots
$ sudo rm -rf /.snapshots

$ sudo snapper -c root create-config /

$ sudo btrfs subvolume list /
ID 256 gen 199 top level 5 path @
ID 257 gen 186 top level 5 path @home
ID 258 gen 9 top level 5 path @snapshots
[...]
ID 265 gen 199 top level 256 path .snapshots

$ sudo btrfs subvolume delete .snapshots
Delete subvolume (no-commit): '//.snapshots'

This setup will make all snapshots created by Snapper be stored outside of the @ subvolume. This
allows replacing @ without losing the snapshots.

Set permissions. Owner must be root , and I allow members of wheel to browse through snapshots
...

4. Manual snapshot
Example of taking a manual snapshot of a fresh install ...

5. Automatic timeline snapshots
Setup timed auto-snapshots by modifying /etc/snapper/configs/root .

Allow user (example: foo) to work with snapshots ...

Example: Set some timed snapshot limits ...

Start and enable snapper-timeline.timer to launch the automatic snapshot timeline, and snapper-
cleanup.timer to periodically clean up older snapshots...

$ sudo mkdir /.snapshots
$ sudo mount -a

$ sudo chmod 750 /.snapshots
$ sudo chown :wheel /.snapshots

$ sudo snapper -c root create -d "**Base system install**"

ALLOW_USERS="foo"

TIMELINE_MIN_AGE="1800"
TIMELINE_LIMIT_HOURLY="5"
TIMELINE_LIMIT_DAILY="7"
TIMELINE_LIMIT_WEEKLY="0"
TIMELINE_LIMIT_MONTHLY="0"
TIMELINE_LIMIT_YEARLY="0"

6. Pacman snapshots
Pacman pre- and post- snapshots are triggered before and after a significant change (such as a
system update).

Example: I install tree , which triggers a pre and post install snapshot.

List configs ...

List snapshots taken for root ...

List updated subvolumes list, which now includes the snapshots ...

$ sudo systemctl enable --now snapper-timeline.timer
$ sudo systemctl enable --now snapper-cleanup.timer

$ snapper list-configs
Config | Subvolume
-------+----------
root | /

$ snapper -c root list
 # | Type | Pre # | Date | User | Cleanup | Description | Userdata
---+--------+-------+-----------------------------+------+----------+-------------------------+---------
0 | single | | | root | | current |
1 | single | | Sat 20 Aug 2022 11:21:53 AM | root | | **Base system install** |
2 | pre | | Sat 20 Aug 2022 11:22:39 AM | root | number | pacman -S tree |
3 | post | 2 | Sat 20 Aug 2022 11:22:39 AM | root | number | tree |
4 | single | | Sat 20 Aug 2022 12:00:04 PM | root | timeline | timeline |

$ sudo btrfs subvolume list /
ID 256 gen 270 top level 5 path @
ID 257 gen 270 top level 5 path @home
ID 258 gen 257 top level 5 path @snapshots
[...]
ID 266 gen 216 top level 258 path @snapshots/1/snapshot
ID 267 gen 218 top level 258 path @snapshots/2/snapshot
ID 268 gen 219 top level 258 path @snapshots/3/snapshot
ID 269 gen 237 top level 258 path @snapshots/4/snapshot

7. Updatedb
If locate is installed, skip indexing .snapshots directory by adding to /etc/updatedb.conf ...

8. Grub-btrfs
Include the snapshots as boot options in the GRUB boot loader menu.

Install ...

Set the location of the directory containing the grub.cfg file in /etc/default/grub-btrfs/config .

Example: My grub.cfg is located in /efi/grub ...

9. Auto-update GRUB
Enable grub-btrfs.path to auto-regenerate grub-btrfs.cfg whenever a modification appears in
/.snapshots ...

At the next boot, there is an submenu in GRUB for Arch Linux snapshots .

10. Read-only snapshots and
overlayfs
Booting on a snapshot is done in read-only mode.

PRUNENAMES = ".snapshots"

$ sudo pacman -S grub-btrfs

GRUB_BTRFS_GRUB_DIRNAME="/efi/grub"

$ sudo systemctl enable --now grub-btrfs.path

This can be tricky:

Add the hook grub-btrfs-overlayfs at the end of HOOKS in /etc/mkinitcpio.conf ...

Re-generate initramfs ...

Note: Any snapshots that do not include this modified initramfs will not be able to use overlayfs.

11. System rollback the 'Arch Way'
Snapper includes a rollback tool, but on Arch systems the preferred method is a manual rollback.

After booting into a snapshot mounted rw courtesy of overlayfs, mount the toplevel subvolume
(subvolid=5). That is, omit any subvolid or subvol mount flags (example: an encrypted device map
labelled cryptdev) ...

Move the broken @ subvolume out of the way ...

Or simply delete the subvolume ...

Find the number of the snapshot that you want to recover ...

An elegant way is to boot this snapshot using overlayfs ... Using overlayfs, the
booted snapshot will behave like a live-cd in non-persistent mode. The snapshot
will not be modified, the system will be able to boot correctly, because a
writeable folder will be included in the RAM ... Any changes in this system thus
started will be lost when the system is rebooted/shutdown.

HOOKS=(base ... fsck grub-btrfs-overlayfs)

$ sudo mkinitcpio -P

$ sudo mount /dev/mapper/cryptdev /mnt

$ sudo mv /mnt/@ /mnt/@.broken

$ sudo btrfs subvolume delete /mnt/@

https://github.com/Antynea/grub-btrfs/blob/master/initramfs/readme.md

Create a read-write snapshot of the read-only snapshot taken by Snapper ...

Where number is the snapshot you wish to restore as the new @ .

Unmount /mnt .

Reboot and rollback!

$ sudo grep -r '<date>' /mnt/@snapshots/*/info.xml
[...]
/.snapshots/8/info.xml: <date>2022-08-20 15:21:53</date>
/.snapshots/9/info.xml: <date>2022-08-20 15:22:39</date>

$ sudo btrfs subvolume snapshot /mnt/@snapshots/number/snapshot /mnt/@

Revision #3
Created 21 September 2024 20:21:40 by Thorgan
Updated 21 September 2024 20:26:59 by Thorgan

